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Higgs modes emerge in superconductors as collective excitations of the order-parameter amplitude when
periodically driven by electromagnetic radiation. In this work, we develop a Floquet approach to study Higgs
modes in superconductors under time-periodic driving, where the dynamics of the order parameter is captured
by anomalous Floquet Green’s functions. We show that the Floquet description is particularly powerful as it
allows one to exploit the time-periodic nature of the driving, thus considerably reducing the complexity of the
time-dependent problem. Interestingly, the Floquet approach is also enlightening because it naturally offers a
physical explanation for the renormalized steady-state order parameter as a result of photon-assisted transitions
between Floquet sidebands. We demonstrate the usefulness of Floquet engineering Higgs modes in time-periodic
s-wave superconductors.
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I. INTRODUCTION

Superconductivity is a macroscopic quantum phenomenon
that has attracted an enormous interest due to its relevance
for future quantum technologies [1–4]. It emerges below a
critical temperature due to the condensation of electron pairs
also known as Cooper pairs, which are characterized by a
macroscopic complex wave function or order parameter [5].
The superconducting order parameter spontaneously breaks
the continuous U (1) gauge symmetry [6] and gives rise to
collective excitations associated to its phase and amplitude
[7–10]. The phase excitations, also known as Nambu-
Goldstone modes, are gapless but are shifted to the plasma
frequency due to the Anderson-Higgs mechanism [11,12].
In contrast, the amplitude excitations, also known as Higgs
modes, are gapped with an excitation energy equal to the
superconducting energy gap [9,13]. In consequence, the Higgs
modes represent the lowest-energy collective excitations of
the order-parameter amplitude and, therefore, are central to
the understanding of superconductivity [14–18].

The detection of Higgs modes in superconductors has
been challenging but promising evidence has been recently
reported [17,18]. The main difficulties are due to the fact
that Higgs modes are scalar excitations, which prevents their
coupling to linear optical probes [19], and also due to their low
energies being of the order of the superconducting gap. De-
spite these issues, it has been found that the presence of other
competing orders, such as charge density waves, can make the
Higgs modes detectable, for instance, by Raman spectroscopy

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by Bibsam.

[20–24]. Moreover, it has been predicted that intense light
fields can excite Higgs modes even without other competing
effects [25–41], which has been recently reported by using ul-
trafast THz pump-probe spectroscopy [42–46]. The advent of
improved intense THz techniques [47–49] therefore will facil-
itate the detection of Higgs modes in the future. Furthermore,
it has been shown that Higgs modes permit to distinguish the
symmetries of the superconductors [50], of pivotal relevance
for understanding unconventional superconductivity and iden-
tifying possible quantum applications.

The importance of light fields to excite Higgs modes in
superconductors has motivated the development of a time-
dependent nonequilibrium framework, where the dynamics of
the Higgs modes is described by a collective precession of
Anderson pseudospins [35,51]. In this case, superconductors
under time-periodic driving signal the emergence of Higgs
modes when the order-parameter amplitude oscillates with
twice the driving frequency. At the same time, the ampli-
tude of the oscillation exhibits a pronounced resonance when
the driving frequency matches the superconducting gap en-
ergy. Even though the pseudospin Anderson description has
been shown to be useful [18], its application to superconduc-
tors with more complicated structures is not straightforward.
However, systems that are driven periodically in time can
be conveniently described with the help of Floquet theory
[52–54], which is analogous to Bloch’s theorem but formu-
lated for the time domain and can, thus, reduce the complexity
of the time-dependent problem. Despite this fact, however, it
is still unknown how Floquet theory describes Higgs modes
in superconductors under time-periodic driving.

In this work, we formulate a Floquet description of Higgs
dynamics in time-periodic superconductors (see Fig. 1). In
particular, we describe the dynamics of the superconducting
order parameter in terms of anomalous Floquet Green’s func-
tions, which turns out to be a simple approach to explore
the Higgs dynamics. Since the Floquet description maps a
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FIG. 1. (a) A static superconductor (gray) with order parameter
�sc described by the Hamiltonian Hsc is periodically driven by a light
field with frequency � depicted by the wiggle yellow arrow. (b) The
time-dependent system can be decomposed in terms of Floquet side-
bands, labeled by sideband index n, where the system is described
by replicas of the undriven Hamiltonian shifted in energy by n� and
coupled by Un which depends on the applied light field. (c) Free
energy of the static superconductor, where the continuous ground-
state symmetry breaking gives rise to a collective excitation, known
as Higgs mode, of the order-parameter amplitude �sc. Under the
effect of a light field, the order parameter becomes time dependent
and the Higgs mode can be excited resonantly at energies � = �sc.
(d) The time-dependent order parameter �(t ) becomes oscillatory
with time and determines the Higgs dynamics, indicated by the cyan
double-headed arrow. Because Higgs modes only couple to light
nonlinearly, �(t ) oscillates with a frequency of 2�.

time-dependent system into a static problem by introducing
Floquet sidebands, the approach developed here allows us
to control the number of sidebands in the Higgs dynamics.
To show the potential of the Floquet description, we repro-
duce the resonant Higgs mode at driving energies equal to
the superconducting gap in conventional s-wave superconduc-
tors and highlight its applicability to other superconductors.
Interestingly, we find that the Floquet approach provides a
natural and physical explanation for the renormalized order
parameter in the nonequilibrium steady-state regime, where
the stationary order parameter is renormalized by a nonequi-
librium steady-state self-interaction (NESI) part that depends
on transitions between Floquet sidebands via photon absorp-
tion and emission. The control and manipulation of the order
parameter by time-periodic drives paves the way for Floquet
engineering Higgs dynamics in periodically driven supercon-
ductors. The remainder of this paper is organized as follows.
We define the problem studied here in Sec. II. In Sec. III,
we describe how pair amplitudes and the order parameter
in time-periodic superconductors are obtained within a Flo-
quet description. In Sec. IV, we apply the Floquet method to
study the order parameter and Higgs dynamics in conventional
time-periodic superconductors. Finally, in Sec. V, we present
our conclusions. To further support the findings of this work,
in Appendixes A and B we provide further details on the
calculations of the Floquet Green’s function in a finite Floquet
space.

II. DEFINING THE PROBLEM: TIME-DEPENDENT
ORDER PARAMETER

We are interested in describing the dynamics of the or-
der parameter in superconductors under time-periodic fields,
which is expected to reveal the emergence of Higgs modes
(see Fig. 1). In conventional spin-singlet s-wave supercon-
ductors, the time dependence of the order parameter is then
described by [55]

�̂(t ) = λ̃
∑

k

〈c−k,↓(t )ck,↑(t )〉, (1)

where λ̃ is the constant attractive pairing interaction, ck,σ an-
nihilates an electronic state with spin σ , momentum k, at time
t . In the following, the ˆ(·) symbol denotes time-dependent
quantities unless otherwise specified. The sum on the right-
hand side of Eq. (1) contains the anomalous average of two
annihilation operators which is the fundamental characteris-
tics of the superconducting state.

The anomalous averages seen above naturally appear when
writing the system’s Green’s functions in Nambu space
Ĝ(k; t, t ′) = −i〈T �k(t )�†

k (t ′)〉, where �k = (ck↑, c†
−k↓)T is

the Nambu spinor and T the time-ordering operator [56,57].
Then, Ĝ(k; t, t ′) is given by

Ĝ(k; t, t ′) =
(

Ĝ(k; t, t ′) F̂ (k; t, t ′)
F̂ †(k; t, t ′) Ĝ†(k; t, t ′)

)
, (2)

where Ĝ(k; t, t ′) = −i〈T ck↑(t )c†
k↑(t ′)〉 is the normal compo-

nent and F̂ (k; t, t ′) = −i〈T ck↑(t )c−k↓(t ′)〉 the anomalous pair
correlation of the Green’s function [56,57]. Now, by a direct
comparison between Eqs. (2) and (1), the time-dependent
order parameter �(t ) can immediately be defined in terms of
the pair correlations as

�̂(t ) = iλ̃
∑

k

F̂ (k; t, t ), (3)

where F̂ (k; t, t ) is the anomalous component of the Nambu
Green’s function in Eq. (2) evaluated at t ′ = t . As discussed at
the beginning of this section, we are interested in the dynamics
of the order-parameter amplitude �̂(t ) and in its Higgs mode
when time-periodic drivings are applied. Equation (3) shows
that, to address the dynamics of the order parameter, it is
necessary to describe and understand the time dependence
of the pair amplitudes F̂ (k; t, t ) under time-periodic driving
which is the problem we aim to address in this work. We note
that although the above discussion has been formulated for
spin-singlet superconductors, the relationship between pair
amplitudes and order parameter also holds for spin-triplet su-
perconductors; the only difference is that the pair amplitudes
then become matrices in spin space, thus enabling the emer-
gence of spin-triplet components [58,59]. Below, we show
how the pair amplitudes and order parameter can be obtained
by exploiting their time periodicity within Floquet theory.

III. FLOQUET PAIR AMPLITUDES
AND ORDER-PARAMETER DYNAMICS

In this section we employ Floquet theory to describe
the pair amplitudes of time-periodic superconductors, which
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correspond to the anomalous part of the Nambu Green’s func-
tion Ĝ(k; t, t ′) given by Eq. (2). For this purpose, we first
aim at finding Ĝ(k; t, t ′), which is obtained by solving the
equation of motion [i∂t − Ĥk(t )]Ĝ(k; t, t ′) = δ(t − t ′), where
Ĥk(t ) is the Hamiltonian of a time-periodic superconductor in
Nambu space.

A. Floquet Green’s function and Floquet pair amplitudes

We consider time-periodic superconductors which emerge
as a result of exposing a static superconductor described by a
Nambu Hamiltonian Hsc(k) to a time-periodic drive Ê(t ) with
period T = 2π/� and frequency � (see Fig. 1). For now, we
assume that Hsc(k) describes a generic superconductor and
its explicit form will be given later. The effect of the time-
dependent drive Ê(t ) is introduced by a minimal coupling
substitution k → k + eÂ(t ), where Â(t ) is the vector potential
Ê(t ) = −∂t Â(t ) and e > 0 is the elementary electron charge.
The total time-dependent Hamiltonian can then be written as
Ĥk(t ) = Hsc(k) + V̂k(t ) where Hsc(k) describes the undriven
superconductor, while V̂k(t ) entirely depends on the drive
Ê(t ), and its explicit form will be discussed later. Then, the
total Hamiltonian Ĥk(t ) acquires the time dependence of Ê(t )
and becomes periodic in time, namely, Ĥ (t ) = Ĥ (t + T ). For
this type of time-periodic Hamiltonians, the Floquet theorem
permits us to write the solutions of the Schrödinger equa-
tion in terms of harmonics of the driving frequency � referred
to as Floquet modes [52–54] (see also Ref. [60]).

In the Floquet picture, the time-periodic Hamiltonian can
be decomposed in Floquet modes as Ĥ (t ) = ∑

m Hme−im�t ,
while the Green’s function Ĝ(t, t ′) = Ĝ(t + T, t ′ + T ) can be
written as [61]

Ĝ(k; t, t ′) =
∑
m,n

∫
dω

2π
e−i(ω+m�)t+i(ω+n�)t ′Gm,n(k, ω), (4)

where the coefficients Gn,m represent the Floquet Green’s
function amplitudes, labeled by the Floquet indices n, m ∈ Z,
and ω ∈ [−�/2,�/2]. We can write the equation of motion
for Ĝ in Floquet space as [61]∑

m′

[
ωδm,m′ − Hm,m′

]
Gm′,n(k, ω) = δm,n, (5)

where

Hm,n = (Hsc − n�)δm,n + Um,n,

Um,n = 1

T

∫ T

0
dt ei(m−n)�tV̂k(t ), (6)

and m and n represent Floquet indices. In deriving the equa-
tion of motion, we used δm,n = (1/T )

∫ T
0 dt ei(m−n)�t and

omitted the momentum label in the Floquet Hamiltonian
harmonics Hm,n for brevity. Thus, we have obtained an equa-
tion of motion in terms of Floquet modes Hm,n and Gm,n which
does not involve any time dependence as a result of employ-
ing the Floquet decomposition. The mathematical structure
of the equation of motion can be visualized as shown in
Fig. 1(b). The diagonal elements Hsc + n� describe replicas
of the original Hamiltonian Hsc shifted by integer multiples
of the driving frequency �. The off-diagonal components

Um,n couple the Floquet bands, are determined by the driv-
ing, and involve the emission (n > m) or absorption (n < m)
of |n − m| photons. We also note that, while the sum over
Floquet harmonics in Eq. (5) runs, in principle, to infinity,
it can be safely truncated due to the focus on a finite range
of frequencies ω and still approximate well the exact result
[61–63]. The determination of the Floquet Green’s function
components Gm,n via the equation of motion (5) then in-
volves a finite matrix inversion. The Floquet components of
the Green’s function can then be used to calculate the time-
dependent Green’s function Ĝ(k; t, t ′) by means of Eq. (4).

Having found the time-dependent Green’s function using
Floquet modes, we are now in position to discuss the cal-
culation of the Floquet pair amplitudes which will allow us
to obtain the order-parameter dynamics. The Nambu struc-
ture of the static Hamiltonian Hsc is inherited by the Fourier
harmonics Hm,n and Gm,n. Therefore, the off-diagonal compo-
nents of the Floquet Green’s function Gm,n in Nambu space
give the Floquet pair amplitudes which we denote as Fm,n.
These Floquet pair amplitudes were shown to naturally appear
in time-periodic superconductors [64] where they provide a
physical interpretation of different emergent superconducting
pairs between Floquet bands due to emission and absorption
of photons.

B. Order-parameter dynamics from Floquet pair
amplitudes in the time domain

Using the Floquet representation of the anomalous Green’s
function, we can write the time-dependent order parameter as

�̂(t ) = iλ̃
∑
k,m,n

∫ �/2

−�/2
dω Fm,n(k, ω) e−i(m−n)�t . (7)

As the order parameter depends only on the pair amplitude
evaluated at equal times, the order parameter oscillates with
integer multiples of the driving frequency � only and does
not depend on ω. In particular, when the number of Floquet
bands is cut off when determining the Floquet Green’s func-
tion Fm,n(k, ω), the maximal oscillation frequency of the order
parameter is given by number of Floquet bands multiplied
with the driving frequency. The time evolution of the order
parameter can be decomposed into its Fourier components as

�̂(t ) =
∑

l

�l (�)eil�t , (8)

where

�l (�) = iλ̃
∑
k,m

∫ �/2

−�/2
dω Fm+l,m(k, ω). (9)

As can be shown by a straightforward calculation (cf. Ap-
pendix A 2), one has �l (�) = �∗

−l (�) which ensures that
the order parameter is real. According to Eq. (8), the order
parameter oscillates around its average value �sc(�) with
amplitudes �l (�) and frequency l�. The behavior seen here
for �̂(t ) is analogous to what is obtained in the Anderson’s
pseudospin picture where the dynamics of the order parameter
is also dictated by deviations from the static regime. There-
fore, the amplitudes �l in Eq. (9) describe the dynamics of
the Higgs mode. We remark that in the static regime without
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any external driving, the left-hand side of Eq. (7) must yield
the order parameter in the static regime which we denote
by �sc. However, in the presence of external driving, the
average value of the order parameter can deviate from its static
value due to a nonequilibrium renormalization caused by the
coupling to other Floquet bands. This nonequilibrium self-
interaction (NESI) is generally nonzero and shifts the order
parameter in a time-independent fashion. We can characterize
this NESI state by

�NESI = �0(�) − �sc, (10)

which involves the contributions of all relevant Floquet side-
bands. We note that this effect was already pointed out
when analyzing the Higgs dynamics within the Anderson’s
pseudospin description but its interpretation was not further
discussed [35]. The Floquet bands employed here, however,
naturally reveal that such self-interaction emerges as a result
of photon-assisted pair correlations between Floquet bands
with equal Floquet indices.

C. Floquet pair amplitudes for large driving frequencies

In order to obtain the Floquet pair amplitudes Fm,n which
characterize the order-parameter dynamics, one has solved
Eq. (5). In principle, this involves the inversion of an infinite-
dimensional matrix. However, as we have pointed out above,
one is usually interested in a finite-frequency range ω only
such that it is possible to neglect higher Floquet bands.
Various previous works have demonstrated that one can ob-
tain good results for a variety of time-dependent problems
when taking into account only n = 0,±1,±2 [61–64]. While
the restriction to a finite number of Floquet bands already
simplifies the matrix inversion, an additional simplification
can be achieved when the driving frequency is much larger
than the coupling between Floquet bands, Um,n/� 
 1. In
this limit, one can perform a systematic perturbation theory
in the Floquet-band coupling which allows one not only to
calculate the Flqouet pair amplitudes but also provides an
intuitive way to visualize the functional dependencies of the
pair amplitudes. To this end, we exploit the Dyson equa-
tion for each Floquet Green’s function component which reads
as G = g + gVG, where G is the dressed Green’s function,
g represents the undressed propagator in the respective side-
band, and V denotes the coupling between sidebands. Up to
second order in V , the previous equation can be written as
G ≈ g + gV g + gV gV g. Then, by projecting this second-order
approximation onto Floquet bands, we get

Gm,n ≈ 〈m|g|n〉 + 〈m|gV g|n〉 + 〈m|gV gV g|n〉, (11)

where |n〉 and |m〉 denote Floquet bands, gm,n = 〈m|g|n〉 is
the projection of the intraband propagator onto Floquet bands
which is finite only for m = n, and Vm,n = 〈m|V |n〉 describes
the coupling between sidebands. The value of the coupling
depends on the structure of the applied drive Ê(t ) (see also
previous two subsections). We remark that all the elements of
Eq. (11) are matrices in Nambu space, such that the Floquet

pair amplitudes Fm,n correspond to the off-diagonal com-
ponents of Gm,n. Thus, using a perturbation approach, it is
possible to obtain further understanding of the Floquet pair
amplitudes, especially about their functional dependencies.
While Eq. (11) has been formulated up to second order in per-
turbation theory, it can readily be extended to include higher
orders and an arbitrary number of Floquet sidebands.

IV. FLOQUET HIGGS DYNAMICS IN CONVENTIONAL
TIME-PERIODIC SUPERCONDUCTORS

In the following, we illustrate our general Floquet the-
ory of Higgs dynamics with the example of a conventional
spin-singlet s-wave superconductor which is subject to a
time-periodic driving by an external electric field. The static
superconductor is modeled by

Hsc(k) = ξkτz + �scτx, (12)

where ξk = k2/2m − μ is the kinetic energy with chemi-
cal potential μ, k = (kx, ky, kz ) denotes the momentum, τi

represents the ith Pauli matrix in Nambu space, and �k =
(ck↑, c†

−k↓)T . Here, �sc represents the spin-singlet s-wave or-
der parameter, chosen to be real without loss of generality. For
the time-periodic driving, we consider linearly polarized light
with a vector potential given by Â(t ) = A0(sin(�t), 0, 0),
which has a period T = 2π/�. Then, the effect of the driving
is incorporated by a minimal coupling substitution k → k +
eÂ(t ) with e > 0, which leads to the a time-dependent Hamil-
tonian given by Ĥkx (t ) = Hsc + V̂kx (t ), where Hsc is given by
Eq. (12) and

V̂kx (t ) = ekxA0

m
sin(�t )τ0 − e2A2

0

4m
cos(2�t )τz, (13)

and we have renormalized the chemical potential as μ →
μ − e2A2

0/4m. We see that the total system Hamiltonian Ĥ (t )
is indeed time periodic Ĥkx (t ) = Ĥkx (t + T ). We are thus
in position to apply the Floquet approach developed in the
previous section to describe the order parameter and Higgs
dynamics given by Eqs. (7)–(9). To this end, we first calculate
the Floquet pair amplitudes Fm,n by solving the equation of
motion (5). For the chosen driving field, the coupling between
the Floquet bands is only finite for nearest- and next-nearest-
neighbor sidebands,

Um,n = U1δm+1,n + U2δm+2,n + U∗
1 δm−1,n + U∗

2 δm−2,n, (14)

where U1 = U1τ0, U2 = U2τz, U1 = iekxA0/(2m), and U2 =
−e2A2

0/(8m) depend on the driving amplitude A0. We use
Eq. (11) to find the components of the Floquet Green’s
functions Gm,n within second-order perturbation theory in
the coupling between sidebands which allows us to obtain
compact expressions for the pair amplitudes. As we have
pointed out above, the perturbation theory can be applied
if Un/� 
 1, i.e.. for weak driving amplitudes. Within this
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approximation, we obtain the Floquet pair amplitudes Fm,n(k, ω) as

F0,0 = �sc

D0
+ �sc|U1|2

D2
0D−1D1

[2(�2 + D0)(4ω2 − D0) − 8(ω�)2] + �sc|U2|2
D2

0D−2D2

[
2(4�2 + D0)

(
4ξ 2

k + D0
) − 8(2ω�)2

]
,

F1,1 = �sc

D1
+ �sc|U1|2

D0D2
1

[4ω2 − D0 + �2 + 4ω�] + �sc|U1|2
D2D2

1

[4(ω + �)2 + �2 − D0] + �sc|U2|2
D−1D2

1

[
D−1 + 4ξ 2

k − 4�2
]
,

F−1,−1 = �sc

D−1
+ �sc|U1|2

D0D2
−1

[4ω2 − D0 + �2 − 4ω�] + �sc|U1|2
D−2D2

−1

[4(ω − �)2 + �2 − D0] + �sc|U2|2
D1D2

−1

[
D1 + 4ξ 2

k − 4�2],
F2,2 = �sc

D2
+ �sc|U1|2

D1D2
2

[4(ω + �)2 + 2ω� + 4�2 − D0] + �sc|U2|2
D0D2

2

[
D0 + 4ξ 2

k − 4�2
]
,

F−2,−2 = �sc

D−2
+ �sc|U1|2

D−1D2
−2

[4(ω − �)2 − 2ω� + 4�2 − D0] + �sc|U2|2
D0D2

−2

[
D0 + 4ξ 2

k − 4�2
]
,

F1,−1 = 2�scU ∗
2

D1D−1
[ξk + �] + �sc(U ∗

1 )2

D1D0D−1
[D0 + �2 − 4ω2],

F−1,1 = 2�scU2

D−1D1
[ξk − �] + �scU 2

1

D1D0D−1
[D0 + �2 − 4ω2],

F0,2 = 2�scU2

D0D2
[ξk − �] + �scU 2

1

D0D1D2
[D0 − 2�2 − 4ω2 − 6ω�],

F−2,0 = 2�scU2

D−2D0
[ξk − �] + �scU 2

1

D−2D−1D0
[D0 − 2�2 − 4ω2 + 6ω�],

F2,0 = 2�scU ∗
2

D2D0
[ξk + �] + �sc(U ∗

1 )2

D2D1D0
[D0 − 2�2 − 4ω2 − 6ω�],

F0,−2 = 2�scU ∗
2

D0D−2
[ξk + �] + �sc(U ∗

1 )2

D0D−1D−2
[D0 − 2�2 − 4ω2 + 6ω�], (15)

where Dn ≡ (ω + n�)2 − ξ 2
k − �2

sc = D0 + 2nω� + (n�)2

and for simplicity we have dropped the arguments (ω, k) in
the Floquet pair amplitudes. Here ξk is the kinetic energy
introduced in Eq. (12). Despite the apparent complexity in
the expressions above, these pair amplitudes exhibit a natu-
ral physical interpretation. In fact, the pair amplitudes Fn,n

represent intrasideband pair correlations and are determined
by the bare pair amplitudes (first term on the right-hand side)
and corrections due to transitions between sidebands, which
are proportional to |U1,2|2 and are assisted by photon pro-
cesses with an equal number of emitted and absorbed photons.
In contrast, the pair amplitudes Fm,n with n = m represent
intersideband pair correlations, with transitions determined
by U2 and (U1)2, or by its conjugate, thus involving either
absorption or emission of photons. We note that these pair
amplitudes are consistent with those found in Ref. [59], but
acquire additional components because the considered drive is
linearly polarized in contrast to the circularly polarized drive
considered in Ref. [59]. We remark that it is straightforward to
obtain similar expressions for the pair amplitudes when taking
into account additional Floquet bands (see Appendix A 1).
However, to understand the Higgs dynamics and NESI state,

it is sufficient to take into account Floquet pair amplitudes Fm,n

with |m − n| = 0,±2.
Before analyzing the Floquet Green’s functions and the

associated time-dependent order parameter in detail, in Fig. 2
we plot the Floquet bands by solving Dn = 0 for ω and
n = 0,±1,±2; the bands are depicted by cyan, yellow, and
magenta curves, respectively. It is worth noting that the side-
bands n = ±1 (purple) meet at ω = 0 to form a singularity
∼1/(�2 − �2

sc)2 which is the dominant singularity in the fre-
quency and energy range of interest. Below we will see that it
is this singularity which gives rise to the resonant behavior of
the order-parameter amplitude at � = �sc which then results
in the resonant Higgs mode.

A. Dynamical contribution to Higgs modes

By using the Floquet pair amplitudes calculated in Eq. (15),
we now calculate the order-parameter dynamics using Eq. (8)
to describe the Higgs dynamics. Due to momentum symmetry,
all contributions odd in k vanish and lead to the well-known
fact that Higgs modes do not couple linearly to light in the
framework of Floquet engineering. Additionally, all odd ξk as
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FIG. 2. Floquet pair amplitude of sideband difference |l| = 2
characterized by the integrand R̃1(�) + R̃2(�) of Eq. (18) as a func-
tion of frequency ω and dispersion ξk. Moreover, the Floquet bands
are plotted after solving Dn = 0 defined below Eq. (15) for n =
0, ±1, ±2, shown by cyan, yellow, and magenta curves, respectively.
Note that R̃1 and R̃2 contain the contributions of n = ±1 and 0,±2,
respectively. Dashed gray lines indicate the integration boundaries of
Eq. (18). Here, driving at frequencies of the static order parameter
� = �sc exhibits a dominant central singularity.

well as odd ω pair amplitudes do not produce an observable
signal either because of symmetrical integration bounds. The
remaining contribution is dominated by next-nearest-neighbor
couplings between Floquet pair amplitudes Fm,n with |m −
n| = ±2. Thus, the time-dependent order parameter in Eq. (8)
oscillates with 2� and has an amplitude

�2(�) =iλ
∫ εC

−εC

dξk

∫ �/2

−�/2
dω(F−2,0 + F−1,1 + F0,2)

= − iλ
∫ εC

−εC

dξk

∫ �/2

−�/2
dω

[
2�scU2�

D−1D1

+ 4�scU2�(D0 + 4�2)

D−2D0D2

]
, (16)

where in the second equality we have used the expressions for
the pair amplitudes F−2,0, F−1,1, and F0,2 given in Eqs. (15).
To obtain Eq. (16), we replaced the sum over momenta by an
energy integration assuming a constant density of states DF

near the Fermi energy and introduced λ = λ̃DF . Furthermore,
we introduced the Debye energy εC as an appropriate cutoff
for the energy integration. Using �2(�) = �∗

−2(�), we can
write the time-dependent order parameter as

�̂(t ) − �0(�) =
∑
l =0

�l (�)eil�t

= 4�scU2λR(�) sin (2�t ), (17)

where �0(�) contains the nonequilibrium renormalization of
the static order parameter discussed above Eq. (10), while

R(�) =
∑
i=1,2

Ri(�), (18)

FIG. 3. Order-parameter amplitude R as a function of the fre-
quency of the drive �, depicted by red curve. Blue and yellow curves
show R1 and R2 as a function of �, which correspond to contributions
due to sidebands n = ±1 and 0, ±2, respectively. The amplitude R
becomes resonant at � = �sc, as a result of the resonant behavior
of the contributions due to F±1,∓1 R1 [see Eq. (16)]. Parameters:
εC = 2000�sc.

where

Ri = �

∫ εC

−εC

dξk

∫ �/2

−�/2
dω R̃i(�) (19)

and

R̃1(�) = 1

D−1D1
, R̃2(�) = 2[D0 + 4�2]

D−2D0D2
. (20)

It is evident that the quantities R̃1(2) contain contributions from
sidebands n = ±1 (n = 0,±2) (see also Fig. 2). Equation (17)
describes the dynamics of the order parameter in the time
domain. As such, it describes the dynamics of the Higgs mode.
By a direct inspection of Eq. (17) we observe that the order
parameter oscillates with twice the driving frequency, 2�. The
amplitude of these oscillations is determined by the static or-
der parameter �sc, the effective electron-electron interaction
λ and the coupling between Floquet bands U2 which involves
the strength of the driving field. In addition, it depends on the
function R(�) given by Eq. (18) which dictates the nontrivial
dependence of the order-parameter dynamics on the driving
frequency and, thus, contains the key information about the
Higgs dynamics. We note that the resonance and dynamics of
the order-parameter amplitude in Eq. (17) are consistent with
the long-time limit reported in Refs. [35,39].

To understand the dependence of R(�) on the driving fre-
quency better, we plot the integrand of Eq. (18) as a function
of ξk and ω in Fig. 2. In addition, therein we also plot the
energies of the Floquet bands which follow from the zeros
of Dn. We observe that R̃1 + R̃2 acquires large values at the
energies of the Floquet bands. We note that inside the integra-
tion boundaries, marked by gray dashed lines, the sidebands
n = ±1 give rise to a singularity of the integrand of the
form ∼1/(�2 − �2

sc)2. Therefore, these Floquet bands give
the dominant contribution to the integral in Eq. (18), which
results in a resonance of R(�) at � = �sc as can be observed
in Fig. 3, where we plot R as a function of �. The reso-
nant behavior of R(�) at � = �sc is directly reflected in the
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resonant behavior of �(t ) in Eq. (17). It is worth noting that
the individual contributions R1 and R2, associated to sidebands
n = ±1 and 0,±2, respectively, have a distinct impact on the
total profile of the order-parameter amplitude determined by
R. While only R1 reveals the resonance at � = �sc, both R1

and R2 develop kinks for � < �sc which might cancel out
as revealed by yellow and blue curves in Fig. 3. We find that
these kinks occur at finite frequencies of the drive given by

�

�sc
= 2

2n + 1
, (21)

where n is the leading sideband contribution. As already
noted, incorporating more sidebands compensates the kinks
and smooths out the overall features of R. Nevertheless, the
resonant profile at � = �sc in the order-parameter ampli-
tude R remains strong, a signature associated to the Higgs
resonance which oscillates with 2� as shown by Eq. (17).
Therefore, R captures the Higgs dynamics. We note that such
a resonant behavior of the order parameter has been derived
previously within the Anderson’s pseudospin formalism [35].
Here, we have recovered such behavior purely by means of
Floquet description including only a few Floquet bands.

B. Nonequilibrium self-interaction

After we have analyzed the Higgs dynamics within Floquet
theory, we now derive the NESI of the order parameter follow-
ing Eq. (10). Taking into account all Floquet modes, we arrive
at

�NESI =�0(�) − �sc

=iλ
∫ εC

−εC

dξk

∫ �/2

−�/2
dω

∑
n =0

�sc

Dn
+ O

(
A4

0

)
. (22)

Here, Dn is given below Eq. (15), �sc the static order parame-
ter, and O(A4

0) involve fourth- and higher-order corrections in
the amplitude of the driving field A0 given in Appendix B. We
note that the contribution of the central sideband with n = 0
is given by

�sc = iλ
∫ εC

−εC

dξk

∫ �/2

−�/2
dω

�sc

D0
, (23)

according to the BCS self-consistency equation and implies
that the contribution of n = 0 drops out of Eq. (22).

In Fig. 4, we plot �NESI as a function of the driving fre-
quency �. We also depict the individual contributions of the
sidebands n = ±1 and ±2 (see the blue and yellow curves
in Fig. 4). At � = 0, the NESI order parameter vanishes
because �0(�) = �sc, in agreement with the expected be-
havior without a drive. As the driving frequency increases,
�NESI exhibits a growth and acquires a maximum (or kink)
at drive frequencies below the static order parameter, namely,
� < �sc. We have verified that the kink results from sideband
contributions at driving frequencies where the corresponding
sideband touches the edge of the integration bounds (see
Fig. 4). In this regard, we note that each sideband produces a
kink (maximum) such that the largest amplitude is associated
to the sideband n = ±1. The next sideband (n = ±2) contri-
bution in �NESI develops a smaller maximum at a lower �, as
shown by yellow curve in Fig. 4. We have verified that higher

FIG. 4. Order parameter of the NESI state as a function of the
frequency of the drive �, depicted by red curve. Blue and yellow
curves represent the contributions to the NESI order parameter due
to nearest (n = ±1) and next-nearest (n = ±2) sidebands. Beyond
� = 2�sc, the sideband spacing becomes large enough and the con-
tribution to the NESI state is negligible. Parameters: εC = 2000�sc.

sidebands (n > ±2) form kinks at much lower amplitudes and
at lower � which implies that the addition of many sidebands
gives rise to a kink in �NESI occurring at � given by Eq. (21)

For larger driving frequencies, the NESI order parameter
decreases and vanishes for � � 2�sc, as a result of the cen-
tral sideband (n = 0) touching the integration bounds, which
then suppresses the contributions from the remaining side-
bands (n > ±1). As higher Floquet band contributions are
suppressed, the resulting steady order parameter is given by
the static value �sc, as seen by Fig. 4. As � increases, the
spacing between sidebands increases to a point � = 2�sc,
where self-interactions between sidebands become negligible.
As self-interactions, which are the key for the NESI state,
vanish, it is expected that the order parameter of the super-
conducting system is simply given by the static one �sc, as is
indeed observed in Fig. 4. We have checked that by adding
more sidebands the behavior of �NESI at large frequencies
remains unchanged. The NESI order parameter discussed here
thus provides evidence of a nonequilibrium superconducting
phase with an order parameter at a value that is distinct than
�sc, which can be fully explained by Floquet picture.

V. CONCLUSIONS

In conclusion, we presented a Floquet approach to study
the Higgs dynamics in time-periodic superconductors, where
the dynamics of the order parameter is captured by Floquet
pair amplitudes. We have shown that the Floquet description
reduces the complexity of the time-dependent problem sig-
nificantly. We illustrated our general theory with the example
of a periodically driven conventional spin-singlet s-wave su-
perconductor and showed that it correctly captures the Higgs
mode as an order-parameter oscillation with twice the driving
frequency which is resonant at the energy of the superconduct-
ing gap. In addition, we could show that the external driving
gives rise to a renormalization of the static order-parameter
component due to the coupling to higher Floquet bands, a
signal that could, in principle, be measured. Our Floquet
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analysis of the Higgs dynamics can readily be extended
to other superconducting systems such as spin-triplet su-
perconductors as well as to the exploration of measurable
observables in the presence of other competing effects as in
Ref. [65]. Given the ongoing efforts to control and manipu-
late the Higgs modes in superconductors, Floquet engineering
provides a powerful method to understand order-parameter
dynamics in driven superconducting materials.
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APPENDIX A: PERTURBATIVE CALCULATION
OF THE FLOQUET GREEN’S FUNCTIONS

We present further details of the Floquet Greens function
and its components obtained within second-order perturba-
tion theory. Focusing on the Floquet space spanned by n =
0,±1,±2, the equation of motion gives rise to a Floquet
Green’s function given by

GF (k, ω) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ω − Hsc − 2� −U∗
1 −U∗

2 0 0

−U1 ω − Hsc − � −U∗
1 −U∗

2 0

−U2 −U1 ω − Hsc −U∗
1 −U∗

2

0 −U2 −U1 ω − Hsc + � −U∗
1

0 0 −U2 −U1 ω − Hsc + 2�

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

−1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

g−1
−2,−2(k, ω) −U∗

1 −U∗
2 0 0

−U1 g−1
−1,−1(k, ω) −U∗

1 −U∗
2 0

−U2 −U1 g−1
0,0(k, ω) −U∗

1 −U∗
2

0 −U2 −U1 g−1
1,1(k, ω) −U∗

1

0 0 −U2 −U1 g−1
2,2(k, ω)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

, (A1)

where the bare Green’s functions gn,n(k, ω) on the diagonal
can be written in Nambu space as

g0,0(k, ω) = (ω − Hsc)−1

= 1

D0

(
ω + ξk �sc

�sc ω − ξk

)
,

gn,n(k, ω) = g0,0(k, ω + n�), (A2)

with D0 = ω2 − ξ 2
k − �2

sc the determinant of (ω − Hsc) and
we have Hsc given by Sec. IV. Due to the nature of the driv-
ing used in Sec. IV, only nearest- and next-nearest-neighbor
coupling between Floquet bands appear. The form of such
coupling is explicitly shown in Eqs. (13) and (14) for a linearly
polarized light drive.

1. Components of the Floquet Green’s function

The elements of the Floquet Green’s functions can be de-
termined by following the discussion presented in Sec. III C,
by using the Dyson’s equation (11) up to second order in
the coupling between Floquet sidebands. Projecting only on
sidebands n = 0,±1,±2, we obtain the following elements:

G0,0 = g0,0 +
∑
±

(g0,0V0,±1g±1,±1V±1,0g0,0

+ g0,0V0,±2g±2,±2V±2,0g0,0), (A3a)

G±1,±1 = g±1,±1 + g±1,±1V±1,±2g±2,±2V±2,±1g±1,±1

+ g±1,±1V±1,0g0,0V0,±1g±1,±1

+ g±1,±1V±1,∓1g∓1,∓1V∓1,±1g±1,±1, (A3b)

G±2,±2 = g±2,±2 + g±2,±2V±2,±1g±1,±1V±1,±2g±2,±2

+ g±2,±2V±2,0g0,0V0,±2g±2,±2. (A3c)

We note that each Floquet element above involves in-
trasideband propagation gn,n and transitions between Floquet
bands driven by Vm,n. Here, the couplings Vm,n are obtained
from Vm,n = −Un−m. The transitions between sidebands in-
volve the absorption and emission of n − m photon. In Fig. 5,
we show an example of all the involved processes for G0,0.

With the the diagonal elements of the Floquet pair
amplitudes at hand, we can now write their off-diagonal com-
ponents taking into account the difference |m − n| which is
useful for obtaining the dynamics of the order parameter in
Eq. (7). Therefore, we obtain

a. |m − n| = 1:.

G0,±1 = g0,0V0,±1g±1,±1 + g0,0V0,±2g±2,±2V±2,±1g±1,±1

+ g0,0V0,∓1g∓1,∓1V∓1,±1g±1,±1, (A4a)

G±1,0 = g±1,±1V±1,0g0,0 + g±1,±1V±1,∓1g∓1,∓1V∓1,0g0,0

+ g±1,±1V±1,±2g±2,±2V±2,0g0,0, (A4b)
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FIG. 5. All available paths in Floquet sidebands for propaga-
tor G0,0 while hopping twice or less. This visual representation
shows the physical interpretation of Eq. (A3a). The coupling Vr,s

are given by Vr,s = −Us−r . Intrasideband interaction is represented
by the bare propagator of the sidebands gn,n. Here, ε + n� denotes
the quasienergy of the nth Floquet sideband. Analog to this example,
all available paths for the other propagator elements Gn,m need to be
considered.

G±2,±1 = g±2,±2V±2,±1g±1,±1

+ g±2,±2V±2,0g0,0V0,±1g±1,±1, (A4c)

G±1,±2 = g±1,±1V±1,±2g±2,±2

+ g±1,±1V±1,0g0,0V0,±2g±2,±2. (A4d)

b. |m − n| = 2:.

G0,±2 = g0,0V0,±2g±2,±2

+ g0,0V0,±1g±1,±1V±1,±2g±2,±2, (A5a)

G±2,0 = g±2,±2V±2,0g0,0

+ g±2,±2V±2,±1g±1,±1V±1,0g0,0, (A5b)

G±1,∓1 = g±1,±1V±1,∓1g∓1,∓1

+ g±1,±1V±1,0g0,0V0,∓1g∓1,∓1. (A5c)
c. |m − n| = 3:.

G±2,∓1 = g±2,±2V±2,±1g±1,±1V±1,∓1g∓1,∓1

+ g±2,±2V±2,0g0,0V0,∓1g∓1,∓1, (A6a)

G±1,∓2 = g±1,±1V±1,0g0,0V0,∓2g∓2,∓2

+ g±1,±1V±1,∓1g∓1,∓1V∓1,∓2g∓2,∓2. (A6b)

d. |m − n| = 4:.

G±2,∓2 = g±2,±2V±2,0g0,0V0,∓2g∓2,∓2. (A7)

The components of the Floquet Green’s function Gn,m ob-
tained here are then used to find the Floquet pair amplitudes
Fn,m, which are determined by the off-diagonal parts of Gn,m.
This is what we carried out in Sec. IV when obtaining the
dynamics of the order parameter in a conventional spin-singlet
s-wave time-periodic superconductor.

2. Order-parameter dynamics are real valued

In the paragraph below Eq. (7), we discussed that the time-
dependent order parameter �(t ) is real. Here we demonstrate
this argument.

We start with the definition of �l (�) given by Eq. (9):

�l (�) = iU
∑
k,m

∫ �/2

−�/2
dω Fm+l,m(k, ω). (A8)

At this point, we note that a sign change of l → −l is the
equivalent to an index swap m ↔ n. Therefore, to show that
the order parameter is real, we need to prove that Fn,m = F ∗

m,n.
The Floquet pair amplitudes Fn,m can be represented per-

turbatively in terms of Floquet Green’s function G via Dyson’s
approach. Looking at Dyson’s series (11), we have

Gm,n ≈〈m|g|n〉 + 〈m|gV g|n〉 + 〈m|gV gV g|n〉
=〈n|g|m〉∗ + 〈n|gV g|m〉∗ + 〈n|gV gV g|m〉∗
≈G∗

n,m, (A9)

where Gm,n represent Floquet components. Now, because Fm,n

is a component of Gm,n, the operation transfers to the order-
parameter amplitudes �l (�) = �∗

−l (−�) which then shows
that �0(�) is real.

Then, the time-dependent order parameter can now be writ-
ten as

�̂(t ) =
∑

l

�l (�)eil�t

=�0(�)

+
∑
l>0

2[Re{�l (�)} cos (l�t )

− Im{�l (�)} sin (l�t )], (A10)

which implies that �(t ) is a real function. This property is
pointed out in Sec. III below Eq. (9).

APPENDIX B: HIGHER-ORDER CORRECTIONS
TO THE NESI ORDER PARAMETER

In Sec. IV B we obtained the NESI order parameter. We
noted that it includes intrasideband contributions as well as
terms containing fourth- and higher-order corrections in the
amplitude of the driving field A0. For completeness, here we
write these corrections, which we obtain to be given by

O
(
A4

0

) = iλ
∫ εC

−εC

dξk

∫ �/2

−�/2
dω �sc|U2|2

×
[

2(4�2 + D0)
(
4ξ 2

k + D0
) − 8(2ω�)2

D2
0D−2D2

+
∑
±

(
D±1 + 4ξ 2

k − 4�2

D±1D2
∓1

+ D0 + 4ξ 2
k − 4�2

D0D2
±2

)]
.

(B1)

It is straightforward to see that these corrections are propor-
tional to |U2|2. Then, by using the expressions for U2 from
Eq. (14), we see that |U2|2 ∝ A4

0, which, for weak driving
fields with small A0, is insignificantly small when compared
to the intrasideband self-interaction in Eq. (22).
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